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Introduction

Deep Learning and Artificial Intelligence workloads continue to demand higher
performance and lower power consumption. This technical paperintroduces

the next generation Al accelerator from Intel: the Intel® Gaudi® 3 Al Accelerator.
The new accelerator features the 5th generation of heterogenous Al acceleration
architecture. The Intel® Gaudi® 3 Al Accelerator was designed to provide state-of-
the-art datacenter performance for all Al workloads, from generative applications
such as large language models (LLMs) and diffusion models (image generation
such as Stable Diffusion) to standard object recognition, classification, and

voice dubbing.

The Intel® Gaudi® 2 Al Accelerator, introduced in 2022, is supported by the Intel®
Gaudi® software suite, which integrates the PyTorch framework. With the Intel®
Gaudi® 3 Al Accelerator we provide the next level of Al performance and power
efficiency. Advancing from the Intel® Gaudi® 2 Al Accelerator 7nm process, the
Intel® Gaudi® 3 Al Acceleratoris manufacturedin TSMC 5nm process, which
provides improved area density and power efficiency.

Intel® Gaudi® 3 Al Accelerator continues to push the boundaries of what is
possible in performance and power efficiency. Built on the Intel® Gaudi® 2 Al
Acceleratorarchitecture, Intel® Gaudi® 3 Al Accelerator provides significant
boosts in compute, memory bandwidth, and architectural efficiency.

The Intel® Gaudi® 3 Al Accelerator features two compute dies, which together
contain 8 MME engines, 64 TPC engines and 24x 200 Gbps RDMA NIC ports.

In addition, the total of 8 HBM2e chips comprise a 128 GB unified High Bandwidth
Memory (HBM).

The Intel® Gaudi® 3 Al Accelerator excels at training and inference with 1.8 PFlops
of FP8 and BF16 compute, 128 GB of HBM2e memory capacity, and 3.7 TB/s of
HBM bandwidth.
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Gaudi® 3 Al Accelerator Overview

Al applications increasingly demand faster and more energy-efficient hardware
2X solutions and the Intel® Gaudi® 3 Al Accelerator was designed to answer the
demand. With more than 2x FP8 GEMM FLOPs and more than 4x BF16 GEMM
FP8 GEMM FLOPs FLOPs comparedto the Intel® Gaudi® 2 Al Accelerator, Intel® Gaudi® 3 Al

Accelerator continues to provide state-of-the-art Al training performance. With

1.5x faster HBM bandwidth and 1.33x larger HBM capacity, the Intel® Gaudi® 3

Al Accelerator provides an order-of-magnitude improvement in large language
X model inference performance compared to the Intel® Gaudi® 2 Al Accelerator.

BF16 GEMM FLOPs The Intel® Gaudi® 3 Al Accelerator (Figure 1) features two identical compute dies,
connected through a high-bandwidth, low-latency interconnect over an interposer
bridge. The die-to-die connectionis transparent to the software, providing

] 5 performance and behavior equivalent to that of a large unified single die.
| X The Intel® Gaudi® 3 Al Accelerator compute architecture is heterogeneous and
Faster HBM Bandwidth includes two main compute engines — a Matrix Multiplication Engine (MME)

and a fully programmable Tensor Processor Core (TPC) cluster. The MME is
responsible for doing all operations that can be lowered to Matrix Multiplication,

like fully connected layers, convolutions and batched-GEMMs. The TPC,
] 3 3X a Very Long Instruction Word (VLIW) Single-Instruction Multiple-Data (SIMD)
[ | processor tailor-made for deep learning applications, is used to accelerate all
Larger HBM Capacity non-GEMM operations.

Intel® Gaudi® Accelerator Product Line

Intel® Gaudi® 2 to Intel® Gaudi® 3 Al Accelerator Feature Comparison.

Feature/Product Intel® Gaudi® 2 Al Accelerator Intel® Gaudi® 3 Al Accelerator
BF16 MME TFLOPS 432 1835
FP8 MME TFLOPS 865 1835
BF16 Vector TFLOPS 1 28,7
MME Units 2 8
TPCUnits 24 64
HBM Capacity 96GB 128 GB
E HBM Bandwidth 2.46TB/s 3.7TB/s
On-die SRAM Capacity 48 MB 96 MB
On-die SRAM Bandwidth 6.4 TB/s 12.8 TB/s
Networking (bidirectional) 600 GB/s 1200 GB/s
Host Interface PCle Gen4 X16 PCle Gen5 X16

Host Interface Peak BW 64 GB/s (32 GB/s perdirection) 128 GB/s (64 GB/s perdirection)

Media Decoders 8 14

Fig 1. Intel® Gaudi® 3 OAM Module. Table 1. Intel® Gaudi® 2 and Intel® Gaudi® 3 AI Accelerators.
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HL-325L OCP Accelerator Module

HLB-325L Universal Baseboard

HW System
HL-325L OCP Accelerator Module

The Intel® Gaudi®3 Al Accelerator OCP Accelerator Module (OAM) Card is
offered to system designers in standard OCP OAM 2.0 Mezzanine card form
and supports up to 900W Total Device Power (TDP) with passive cooling and
up to 1.2KW TDP with liquid cooling.

Table 2 provides its key interfaces:

Interface Description
Host Link x16 PCle Gen5

Networking:Card-to-Card &

Scale-out 48 x112 Gb/s PAM4 SerDes Links

JTAG In-field CPLD programming and low-level ASIC debug
UART Low level debug & BMC access

I2C Master On/Off-board Peripherals

12C Slave /SMBUS BMC controland monitoring interface

Table 2. HL-325L OCP Accelerator Module Key Interfaces

HLB-325L Universal Baseboard

The HLB-325 Universal Baseboard is another product inspired by Open Compute
Project (OCP) and offered for simplifying system design with the Intel® Gaudi®

3 Al Accelerator. The HLB-325 supports eight Intel® Gaudi® 3 Al Accelerator
cards that are passively interconnected onits PCB in a non-blocking, all-to-all
configuration, using 21 NICs from each card (3x 200 GbE ports to every other of
the 7 cards), as well as routing the 3 remaining 200 GbE NICs from every Intel®
Gaudi® 3 Al Accelerator card (3x8=24) to the six on-board OSFP800 connectors
forscaling-out.

The baseboard has standard interface/connectors to the HIB (Host Interface
Board), which allows the system designer customization to design to specific
needs and the flexibility to build systems of choice with a different ratio of CPUs
to accelerators for different varieties of topologies and applications.
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Block Diagram and Main Components

= HLB-325 has the following main components: = LED indications

= 8 X dual B2B connectors for the HL-325 Mezzanine boards = 6x OSFP connectors (6x800G using 112G PAM 8 SerDes)
= High speed connectors forx16 PCle interconnect to HIB = 3xPHY retimers

= 2 Complex Programmable Logic Devices = 8xPCleretimers

= Powerandreset control = USB connectors for Debug

= JTAG distribution to the mezzanines
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Fig 2. Key components of HLB-325
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Fig 3. HLB-325 High Speed Block Diagram.
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Feature Description

= OAM powered by 54V,12V and 3.3V
= Dual B2B connectors

GANMISuRert = x16 PCle Gen5 hostinterface per OAM
= 24x200 GbE RoCE forscaleup and scale-out, via 48 112G PAM4 Serdes
=8X16 PCle Gen 5 connectors

Baseboard to HIB (Host = Power: 12V_Standby, 54V

Interface Board) Interface = Side band signals: 12C, Reset, reference clocks, JTAG, UART, SGMII, USB

= Eight Amphenol connectors: 2x160P (10131762-301LF) + 6 x 112P (10137002-101LF)

= Per OAM: 24x 200 GbE (48112 Ghz PAM4 SerDes Links) splitinto:
=21x200 GbE for OAM-to-OAM connections

Networking: Card to Card & « 3x200 GbE for scale-out

Seeelle-eu = Total Baseboard Scale-out:
*8x3x200 GbE=4.8 ThE connectedto 6 OSFP800 ports
PCB dimension =585 mMmx417 mmx 4.6 mm

Table 3. HLB-325 Features

HL-338 PCle Add-In Card

The Intel® Gaudi® 3 Al Accelerator PCle Add-In Cardis offered to system
. t designersinaccordance with PCle CEM Spec. Revision 5.1form and supports
n EIGaUD[ up to 600W TDP Power with passive cooling.

Table 4 provides HL-338's key interfaces:

- TTee—— 000

L

Interface Description
HL-338 PCIe Add-In Card

Host Link x16 PCle Gen5

Networking:

" 48x112 Gb/s PAM4 SerDes Links

- Carkie-Care * 2x400G OSFPII2 ports

® Scale-out

JTAG In-field CPLD programming and low-level ASIC debug

12C Slave / SMBUS BMC controland monitoring interface

Table 4. HL-338 PCIe Key Interfaces

HLTB-304 x4 Top Board

The HLTB-304 board allows connectivity of 4 HL.-338 cards, 6x 200 GbE links
from each. HL.-338 card to each of the other 3HL-338 cards, 18 links of 200 GbE
total percard.

HL-338 HL-338
18x200G 18x200G
RoCE RoCE
HL-338 HL-338
18x200G 18x200G
RoCE RoCE

Fig 4. HLTB-304 Block Diagram.
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Intel® Gaudi® 3 Al Accelerator Architecture
Parallel Execution of the Heterogenous Engines

Intel® Gaudi architecture was designed to allow activating all engines in parallel.
This means that MME, TPC and NIC can all work at the same time.

The two main use-cases for running different engines in parallel are:

1. No dependency between the input and output of type of engine. In this case
no special software intervention is needed. The Graph Compiler can simply
trigger each engine to execute, providing the full input and output tensor sizes.

2. Thereis dependency between operations running on different engines:
the output of one engineis used as the input of another engine.

The first caseis simple and allows MME, TPC and NIC to be scheduled to runin
parallel. When one engine has completed its executing operation, the engine can
be scheduled to start working on the next operation immediately upon readiness
ofitsinputs).

The second case is more complex as it requires finer-grained scheduling, in
addition to work size management that is done by the Intel® Gaudi software.

In this case, the dependent engines are scheduled to execute in a pipelined
manner with a producer-consumer relation. The engine scheduling and entire
orchestration is done by the Graph Compiler. A more detailed explanation on
how several software layers are combined to work together to achieve efficient
engine scheduling and execution is presented in the following section.

Figure 5 shows the complete block diagram of the Intel® Gaudi® 3 Al Accelerator.
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Fig 5. Intel® Gaudi® 3 AI Accelerator with L2 cache for every 2 MME and 16 TPC unit. Parts of L2 can be configured by the Graph Compiler to serve as shared L3.



GauDi

Intel® Gaudi® 3 Al Accelerator Technical Paper — 3. Architecture

PCIE

LIL] i
L] AR
MME TPC
v L
DEC ROT

=
@}
NET SSu

Each of the components in the chip are explained in detail in the next chapters.
Fullimplementation of Intel® Gaudi® 3 Al Acceleratorincludes the following units:

Compute Engines
= 8 Matrix Multiplication Engines (MMEs)
= 64 Tensor Processor Cores (TPCs)

Media Engines
* 14 Media Decoder Engines (DECs)
= 4 Rotator Engines (ROT)

Memory
= 96 MBof L2 Cache
= 128 GB of 8HBMZ2e stacks

Networking

» PCle Genb X16 port for communicating with host

» 24 Network ports and the accompanied RDMA Engine
* Schedulingand Synchronization Unit

Physical partioning

Intel® Gaudi® 3 Al Accelerator compute engines are splitinto four clusters.
Each clusterisreferred to asa DCORE (Deep Learning Core) and contains:
= 2 Matrix Multiplication Engines (MMEs)

= 16 Tensor Processor Cores (TPCs)

» 24 MBof L2 Cache

Figure 6 reviews Intel® Gaudi® 3 Al Accelerator architectural elements with
DCORE partition, Media Sub-system, Network sub-system and the connection
with Host.
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HOST
FRAMEWORK INTEGRATION LAYER
CUSTOMER INTEL® GRAPHCOMPILER
KERNEL KERNEL
LIBRARY LIBRARY COMMUNICATION LIBRARY
USERMODE DRIVER
| KERNEL KERNEL MODE DRIVER
Intel® Gaudi® 3 PCle Gen5 X16
| PCle +SOC
| SCHEDULER +SYNC
DCORE DCORE DCORE DCORE MEDIA NETWORK
TPc | TPC Tpc | TPC Tpc | TPC TPC | TPC oec | oec Nic | nie | nie
ROT
TPC TPC TPC TPC TPC TPC TPC TPC NIC | NIC | NIC
MME MME MME MME DEC | DEC J
TPC TPC TPC TPC TPC TPC TPC TPC NIC | NIC | NIC | %
o
DEC | DEC =
TPC | TPC TPC | TPC TPC | TPC TPC | TPC ROT NIC [ NIC [ NIC | o
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o
TPc | TPC TPc | TPC Tpc | TPC Tpc | TPC DEC | DEC Nie [ Nne | Ne s
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TPc | TPC TPc | TPC TPc | TPC TPc | TPC ROT 8
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TPc | TPC TPc | TPC TPc | TPC TPc | TPC
ROT
L2 CACHE L2 CACHE L2 CACHE L2 CACHE DEC | DEC RDMA | EDMA
L3CACHE

DEVICE MEMORY (HBM)

Fig 6.

Intel® Gaudi® 3 architecture with DCORE point-of-view and supporting software layers.
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Host Interface

Intel® Gaudi® 3 PCle Card

Intel® Gaudi® 3 Al Acceleratoris equipped with a state-of-the-art PCl Express
Gen 5 x16 lane interface, a significant upgrade from the Gen 4 PCle found in the
prior generation accelerator. This advanced interface offers an impressive total
bandwidth of 128 GB/sec, with 64 GB/sec available in each direction. Thisis a
substantial improvement over the 64 GB/sec total bandwidth (32 GB/sec in each
direction) provided by the Gen 4 PCle.

The PCle Gen 5interface allows Intel® Gaudi® 3 Al Accelerator to seamlessly
connect with the most powerful CPUs, external NICs, and SSDs available on the
market. This ensures optimal performance and efficiency, making it aleading
choice for high-performance computing solutions.

Intel® Gaudi® 3 Control Path

To manage the parallel and efficient execution of various engines, the Intel®
SYNAPSE RUNTIME Gaudi® 3 Al Acceleratorincorporates a programmable Control Path entity.
This entity is designed for high throughput and low latency. Figure 7 provides
the primary components of this functionality.

HOST

RUNTIME DRIVER

sQv CcQa

The Control Path of Gaudi® 3 comprises the following elements:

INTEL® GAUDI® 3 | T = Submission Queues (SQs):
These are issued by the runtime system.

pUR— = Completion Queugs (CQs): ' .
These are used for job completion reporting.
il AN e SCHEDULER = Programmable Scheduling Mechanism:
" (&0 This mechanism s utilized for task scheduling.
= Programmable Hardware Synchronization Mechanism:
AGGR bEC Thisis referred to as ‘Sync Manager (SM)’in the diagram and is used
e . MME for hardware synchronization.
= Programmable Interrupt Service Mechanism:
DEVICE MEMORY This mechanism, referred to as ‘Interrupt Manager (INTR)" in the diagram,
enables the passing of asynchronous events to Habana Drivers.
Fig 7. Control Path Block Diagram. Each of these components plays a crucial role in ensuring the smooth

and efficient operation of Intel® Gaudi® 3 Al Accelerator engines.

For controlling parallel and efficient executions of the various engines,
the Intel® Gaudi® 3 Al Acceleratorincludes a programmable low-latency,
high throughput Control Path entity. Figure 7 illustrates the main building
blocks of this functionality.
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Fig 8. Supported floating-point datatypes.

Compute

Figure 8 showcases the range of Floating Point Data types that are supported
by the Intel® Gaudi® 3 Al Accelerator engines, demonstrating its versatility and
adaptability.

Table 5 provides a detailed breakdown of the peak operations per second for both
matrix multiplication (performed by MME) and vector processing (performed by
TPC). This information underscores the impressive computational power of the
Intel® Gaudi® 3 Al Accelerator.

Intel® Gaudi® 3 Al Accelerator

Computation Type Datatype OAM Peak TFLOP/sec PCle Peak TFLOP/sec

FP8 1835 1835
BF16 1835 1835

MME (Matrix) FP16 (signed) 459 459
TE32 459 459
FP32 229 229
FP8 57.3 57.3
BF16 28.7 28.7

TPC (Vector)
FP16 28.7 28.7
FP32 14.3 14.3

Table 5. Intel® Gaudi® 3 OAM and PCIe matrix and vector compute capabilities.

Intel® Gaudi® 3 MME

MME Intro

The Intel® Gaudi® 3 Al Accelerator Matrix Multiplication Engine (MME) represents
the 5th Generation of the Intel® Gaudi® Accelerator family MME Engines. These
MMEs are specialized, high-performance compute cores, specifically designed
for matrix operations, a type of computation that is fundamental to deep learning
algorithms. The Intel® Gaudi® 3 Al Accelerator houses eight such MMEs, each
capable of performing animpressive 64K parallel operations. This massive
parallelism allows for a high degree of computational efficiency, making these
MMEs particularly adept at handling the complex matrix operations prevalent

in deep learning workloads.

The MMEs in Intel® Gaudi® 3 Al Accelerator have been tailored for efficiency

in multiplication operations performed on current deep learning models.

They feature arich programmer’s model that enables flexibility when distributing
ajob among the various MMEs and providing memory directives to maximize
MACs utilization.

As deep learning models continue to increase in size and complexity, the demand
for efficient, high-performance matrix multiplication enginesis set torise. The
MMEs in solutions like Intel® Gaudi® 3 Al Accelerator are therefore of critical
importance to the ongoing advancement of deep learning technologies.
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MME Architecture

The Intel® Gaudi® 3 Al Acceleratoris a powerhouse of computational capability,
housing eight Matrix Multiplication Engines (MMESs). Each of these engines

is equipped with 64K Multiply-Accumulate Units (MACs), which collectively
enable a peak throughput of over 200 Teraflops per MME. This high

throughput underscores the impressive performance potential of the Intel®
Gaudi® 3 Al Accelerator.
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Fig 9. General matrix multiplication and its mapping to the MME engine block diagram.

Figure 9 offers a view of the functionality of a single engine. This visual
representation can help users better understand the intricate workings of

the MMEs and their role in the overall performance of the Intel® Gaudi® 3 Al
Accelerator. With this knowledge, users can fully leverage the capabilities of the
accelerator for their computational needs.

Figure 9A presents an algorithmic depiction of a General Matrix Multiplication
(GEMM) operation, specifically an AxB multiplication. This operation generates
tensor C[NxM] from two input tensors, A[NxK] and B[KxN]. Remember that in
matrix multiplication, each computed elementis the dot product of arow in A
and acolumnin B, as demonstrated by the darker shades in the three tensors.

Figure 9B displays a block diagram detailing the data flows. The MME is
programmed with the necessary dimensions, locations, data types, and various
execution operands. It then retrieves tensors A and B from memory, pulling them
into its streaming buffers for the matrix multiplication. The matrix multiplication
can execute up to 64K Multiply and Accumulate operationsin parallel. Upon
completion, it will push tensor C back to memory. The memory system comprises
acache andthe actual HBM memory. Each of these tensors can be independently
pulled or pushed to the on-die SRAM, irrespective of the MME behavior.

For more information, refer to the Memory section. The eight MME engines

can be programmed together to perform alarger job. The following diagram
represents 8 MMEs.
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Fig 10. General matrix multiplication and its mapping to the MME engine block diagram.

Figure 10A represents 8 MMEs and illustrates an algorithmic process where an
AxB matrix multiplication is divided among the eight MMEs. Each MME performs
an NxM slice of the job, sharinga common dimension of K. The Intel® Gaudi® 3

Al Accelerator memory subsystem, along with its runtime optimizations, ensures
that, when possible, any reused data is fetched only once from the HBM.
Forinstance, mmeO, mme2, mme4, and mmeé all pull from the upper part

of tensor A, while mme0O and mmel share a quarter of tensor B. The HL GC
Runtime ensures that when needed, fetched datais stored in cache.

It's worth noting that other dimension splits are possible, and the Graph
compiler analyzes the different options to choose the most efficient setting.

Figure 10B shows a block diagram detailing the data flows. The MMEs can operate
in parallel, each fetchingits required subset of A and B and producing its NxM
subset within C. The eight MMEs in Intel® Gaudi® 3 Al Accelerator enable parallel
performance of 0.5M operations, achievingup to 1.8 TB/s.
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Fig 11. Comparison of one large MME to 256
small cores. Despite having the same compute
capabilities, MME consumes 16x less input data
than the smaller cores.
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Benefits of One Large Matrix Multiplication Unit Over Multiple Small Units

As mentioned above, Intel® Gaudi® 3 Al Accelerator features eight large MMEs
with each MME performing 64k MACs per cycle. Comparing the MME to modern
GPUs that were modified for Al workloads, the Intel® Gaudi® 3 Al Accelerator
features a small number of large matrix multiplication units, while GPUs contain a
large number of small matrix multiplication units. The following diagram compares
the two options for GEMM accelerators: one large unit vs. multiple small units.

Figure 11compares a single Intel® Gaudi® 3 Al Accelerator MME with 64k
Multiply-Accumulates (MACs) per cycle to 256 small GEMM cores each with
256 MACs/cycle, which amount to 64k MACs/cycle. This diagram assumes the
MME and cores are organized as squared 2D matrices. The MME contains 256
rows over 256 columns, and the small cores contain 16 rows over 16 columns
each. The comparison assumes input datatype of FP8, which requires 1 byte per
input element.

The compute capabilities of the two options in Figure 11are equivalent — both

can perform 64k MACs/cycle. However, from a bandwidth perspective the two
options significantly differ. Figure T1A shows that the large MME requires two

sets of 256B inputs per cycle, summing up to 512B per cycle. On the other hand,
Figure 11B shows each of the small cores requires two sets of 16B inputs per cycle,
summing up to 32B per core per cycle. The totalamount of input data that is
required to feed all the 256 small coresis 256 times 32B, which amounts to 8192B.
Thisis 16 times more than what a single large MME requires.

The smalleramount of required input data by the MME translates to multiple
advantages. The 16x reduction in input bandwidth translates to less data transfers
and higher energy efficiency. Second, the large requirement forinput bandwidth
puts constraints on the minimal GEMM dimensions that allow the system to
reach high compute utilization. For example, to reach 80% compute utilization on
modern GPUs with many small matrix multiplication cores, a GEMM dimension
of m=n=k=~3Kis required. In the Intel® Gaudi® 3 Al Accelerator, m=n=k=1Kis
sufficient to utilize 100% of the MACs. If activations are pipelined via 96 MB L2
cache (whichis usually the case), m=n=k=512 is sufficient to utilize MME by 100%.
In other words, Intel® Gaudi® 3 Al Accelerator requires between ~25x-~200x
less MACsina GEMM operation to reach 100% compute utilization compared

to modern GPUs which reach only 80%. Paradoxically, we see that creating a
relatively large matrix multiplication accelerator allows hardware to be efficiently
utilized on smaller GEMM sizes compared to the alternative.

MME Data Types

The Intel® Gaudi® 3 Al Accelerator MME supports all the key Al compute
datatypes: FP8 (both EAM3 and E5M2), BF16, FP16, TF32 and FP32. All
datatypes are accumulated into an FP32 accumulator.

As FP8 becomes the favored compute datatype for training and inference,
Intel® Gaudi® 3 Al Accelerator’s 5th generation MME integrates on-the-fly FP8
input scaling, reducing the compute load requirements of the TPC for scaling
to/from FP8.
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Intel® Gaudi® 3 TPC

Tensor Processor Core Introduction

The Intel® Gaudi® 3 Al Acceleratorintegrates the 5th-generation Tensor
Processor Core. The TPCis ageneral-purpose single instruction, multiple data
(SIMD) VLIW processor. Itis 256B wide and supports FP32, BF16, FP16 & FP8
(both E4AM3 and E5M2) datatypes. In addition, the following integer datatypes are
supported: UINT32,INT32, UINT16, INT16, UINT8 and INTS8.

As opposed to common DSPs, which require a DMA to fetch in and out the
operandsto alocal SRAM, the TPC exposes a DMA-free programming model,
achieved by advanced micro-architectural techniques, which significantly eases
software development. In addition, the same advanced microarchitecture allows
consecutive execution, free of idle time, between kernels. This allows 100%
runtime utilization of the TPC, even for micro-second scale kernels, regardless
of the location of its inputs and outputs (cache or DRAM). Just like the MME, the
TPC reaches high compute utilization even when working on small-sized inputs.

TPC Architecture
Figure 12 represents TPC Block diagram and illustrates its functionality.

C=A(p)B

SCALAR VECTOR
UNIT PROCESSING UNIT
B
| L1CACHE | | TENSORREGFILE |

e c
| LOAD/STORE UNIT |

CACHE

[A] [B]

Fig 12. General matrix multiplication and its mapping to the MME engine block diagram.
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Intel® Gaudi® 3 Al Accelerator Media Engine

Ozl DECODERENGINE

oog
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Intel® Gaudi® 3 Al Accelerator has fourteen media decoding units. The following
formats are supported.

Level 4 Video Formats

» HEVC up to 10 profiles, up to 8192x8192 resolution

* Progressive H.264 & SVC base layer &MV C up to 4096x4096 resolution
= VP9 up to profile 2 10-bit) up to 8192x8192 resolution

Image Formats
» JPEG up to 8192x8192 resolution
* Progressive JPEG up to 8192x8192 resolution

In addition to decode, the block also supports the post processing of the streams.

Post Processing Features
* Image down-scaling (resizing the image):
= Vertical and horizontal scaling can use different scaling ratios
= Maximum output picture size of 4096x4096
= Image up-scaling (up to x3):
= Vertical and horizontal scaling can use different scaling ratios
= Maximum output picture size if 4096x2160
= Image cropping:
= Use definable 4-pixel accuracy crop parameter setting of start,
position width and height
= Digital zoom
= Supported by combining crop and upscaling.
= The PP supports bilinear scaling, Lancos scaling

Intel® Gaudi® 3 Al Acceleratorimplements two post processing channels
perdecoder block, one with scalar (up and down) and one just to output
the originalimage.

Performance
Video Format* 1080p30 Streams Overall performance across all the hardware instances is show in the Table 7.
HEVC 250 Formats Supported

Video decoder supports the following features:

VP9 300
Feature Support
2ol 200 Input stream format 0 VOO, 422,40
B = YCbCr440,411,400
Image Format* 1080img/sec
Output stream format YCbCr420 or RGB/BGR packet or per planer
Jpeg 420 12000 Table 7. Decoder Formats.

*Please note the actual performance of the decoder
depends onvarious factors such asimage resolution,
image quality and format.

Table 6. Format performance.
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ROTATOR ENGINE

The Intel® Gaudi® 3 Al Acceleratorintegrates a hardware rotator engine which
allows performing the following transformations of an inputimage:

= 2D rotation

= 3D rotation

* Projection

* Mesh: Distortand undistortimages

* Re-sampler: Re-samplesinput data at user-defined coordinates

» Re-scale with polyphase filter

Intel Gaudi® 3 Al Accelerator Memory Attributes

The Intel® Gaudi® 3 Al Accelerator on-die memory has two main advancements
overits predecessoraccelerator. The firstis 2x size increase, from 48 MB to a total
of 96 MB of on-die SRAM. The second advancement is the integration of two-
level cache. The on-die 96 MB of SRAM can be used as a uniformly accessible
last-level cache (L3) or split to 4 slices of 24 MB L2 cache each, with each slice
accessible to 2 MMEs and 16 TPCs. L2 provides 2x higher cache I/O throughput
comparedto L3. Using the on-die memory as L2 or L3 cache is fully configurable
by the Intel® Gaudi® software stack, which dynamically decides per I/O tensorits
optimal cache allocation.

Intel® Gaudi® 3 Al Acceleratorintegrates 8 HBM2e devices running at 3.6GHz
frequency, providing 3.7 TB/s peak HBM bandwidth, 50% higher than the Intel®
Gaudi® 2 Al Accelerator. Each HBMZ2e device capacity is 16 GB, reaching a total
128 GB, 33% higher than the second generation accelerator and 1.6x higher than
competing GPU solutions having only 80 GB of HBM memory.

The advantages of larger memory capacity are two-fold. One advantage is
enablement of execution of configurations that require more devices with smaller
HBM capacity; the otheris use of configurations that are more compute-efficient,
such asincreased batch size or avoidance of precomputation.

In the rapidly evolving landscape of Deep Neural Network (DNN) acceleration,
the Intel® Gaudi® 3 Al Accelerator stands out with its innovative memory
subsystem. This subsystem is a critical component of our product, designed to
work in harmony with Matrix Multiplication Engines (MMEs) and Tensor Processor
Cores (TPCs) to deliver unparalleled performance.

Gaudi®2 OAM Gaudi®30AM
PCle Gen4d x16 Gen5x16
PCle Peak BW 64 GB/s bidirectional 128 GB/s bidirectional
HBM 6 xHBM2E 8xHBM2E
HBM Capacity 96 GB 128 GB
HBM Peak BW 2.46TB/s 3.7TB/s
On-die-SRAM 48 MB 96 MB
On-die-SRAM BW 6.4TB/s 19.2TB/s
TDP 600 W 900 W

Table 8. Gaudi 2 OAM to Gaudi 3 memory attributes.
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VIRTUAL SPACE ACCESSIBILITY

At the heart of the Intel® Gaudi® 3 Al Accelerator memory subsystemis a
Memory Management Unit (MMU) that allows users to operate in a virtual space
when accessing VRAM. This feature abstracts the complexities of memory
management, providing a seamless user experience.

ADVANCED CACHING SYSTEM

The Intel® Gaudi® 3 Al Accelerator memory subsystem is equipped with L2

and L3 caches, which are coupled to each DCORE and HBM memory channels,

respectively. The cache system is designed to optimize data access with several key

features:

= High Throughput: The system provides a total throughput of up to 19.2 TB/s for
L2 accessesand 6.4 TB/s for L3 accesses.

= Large Capacity & Set-Associativity: With a capacity of 96 MB and 12-way set-
associativity, the cache system can handle large volumes of data effectively.

= Allocation Hints: Users can specify whether to cachein L2, in L3, or both, offering
greater control over data management.

= Age Replacement Algorithm: The system uses an age replacement algorithm
that considers user-defined classes and priorities, ensuring efficient use of
cacheresources.

= Maintenance Commands: These commands enhance cache utilization and
prevent unnecessary data from consuming HBM resources.

HIGH BANDWIDTHMEMORY INSTANCES

The Intel® Gaudi® 3 Al Accelerator memory subsystem includes 8 High Bandwidth
Memory (HBM) instances, providing a total capacity of up to 128 GB and a total
bandwidth of 3.7 TB/s. This substantial capacity and throughput ensure that the
system can handle large volumes of data effectively.

In conclusion, the Intel® Gaudi® 3 Al Accelerator memory subsystem is a testament
to our commitment to pushing the boundaries of DNN acceleration. Its advanced
features and high performance make it an integral part of our product, enabling us to
deliver a solution that meets the demanding needs of today’s DNN applications.

PCle Gen5X16

INTEL® GAUDI® 3
PCle EP+SOCINFRASTRUCTURE |
SCHEDULER + SYNC |
DCORE DCORE DCORE DCORE MEDIA NETWORK
i
MMEs TPCs MMEs TPCs MMEs TPCs MMEs TPCs NICs @
ROTs DECs s
<
i
MMU MMU MMU MMU RDMA o
o
&
L2CACHE L2CACHE L2CACHE L2CACHE MMU MMU x
J
| L3CACHE |
| HBM HBM HBM HBM HBM HBM HBM HBM |

Fig 13. Intel® Gaudi® 3 architecture with DCORE point-of-view and supporting software layers.



intel

Gaupl Intel® Gaudi® 3 Al Accelerator Technical Paper — 5. Compute

HOST

E 0000

INTEL® GAUDI® 3

HOST

|

Networking

The integration of RDMA over Converged Ethernet on the Intel® Gaudi® 3 Al
Accelerator delivers distinct advantages enabling massive and flexible scaling
from a single node to thousands. To express the advantages of the solution’s
scaling capabilities, it's essential to commence at the foundation of the network —
the networking architecture contained in the Intel® Gaudi® 3 Al Accelerator.

The Intel® Gaudi® 3 Al Accelerator’s revolutionary NW Sub-system, the
powerhouse behind seamless data movement and efficient task management.
Atits core features the Intel® Gaudi® Communication Library (IGCL), a master
conductor that orchestrates data movement. Our system is equipped with a
programable scheduling mechanism, ensuring smooth activation of engines while
maintaining task dependencies.

The Intel® Gaudi® 3 Al Accelerator networking sub-system boasts 24 200
Gigabit Ethernet NIC ports, a Layer2 MAC, and RDMA Engines. This robust setup
supports high-speed data transfer and superior performance.

To topitall, the Intel® Gaudi® 3 Al Accelerator has four dedicated Aggregation
Engines. These engines spring into action on behalf of the Communication
Library, performing summing activities. This means faster computations and
more efficient data processing.

HOST

COMMUNICATION LIBRARY

USERMODEDRIVER

KERNEL MODE DRIVER

PCle Gen5 X16
|

INTEL® GAUDI® 3 INTEL® GAUDI® 3
| SCHEDULER +SYNC
NICO
- PHY L2 RDMA AGGR AGGR AGGR
ENG ENG ENG
0O MMEs | TPCs MMEs TPCs
w w
L I 4
O G |9 MMU o MMU
< Q Q
O Sk :
@
O - L2CACHE L2CACHE
MMEs | TPCs MMEs TPCs
w w
4 4
NIC 23 8 MMU 8 MMU
PHY L2 RDMA 2 2
L2CACHE L2CACHE

Fig 14. General matrix multiplication and its mapping to the MME engine block diagram.
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Gaudi Software Suite

Intel® Gaudi® Software Suite

Designed to facilitate high-performance deep learning (DL) training and inference
onIntel®’s Al Accelerators, the Intel® Gaudi® software suite efficiently maps
neural network topologies to the Intel® Gaudi® hardware family. The software
suite includes low-level components, such as a graph compiler, an automatic
kernel fuseranda library of precompiled kernels, as well as integration to the Al
ecosystem: PyTorch, DeepSpeed, Hugging Face, vLLM, Ray and more. The Intel®
Gaudisoftware also includes custom implementations of popular algorithms such
as Paged Attention, Flash Attention and more.

Graph Compiler and Runtime

The Intel® Gaudi Graph Compiler generates optimized binary code that
implements the given model topology on Intel® Gaudi®Al Accelerators. It
performs operator fusion, data layout management, parallelization, pipelining

and memory management, and graph-level optimizations. The Graph Compiler
uses therich TPC kernel library, which contains a wide variety of performance-
optimized operations (for example, elementwise, non-linear, non-GEMM
operators). Given the heterogenous nature of Intel® Gaudi® 3 Al Accelerator
hardware (MME, TPC and DMA), the Intel® Gaudi Graph Compiler enables
effective utilization through parallel and pipelined execution of framework graphs.
The Intel® Gaudi software uses stream architecture to manage concurrent
execution of asynchronous tasks, supporting Intel® Gaudi’s unique combination of
compute and networking, exposing a multi-stream architecture to the framework.
Streams of different types — compute, networking, and DMA — are synchronized
with one another at minimal latency with no hostinvolvement.

TPC Programming

The Intel® Gaudi software TPC SDKincludes an LLVM-based TPC-C compiler,

a simulator and debugger. These tools facilitate the development of custom TPC
kernels. The SDK s used to build the high-performance kernels. Users can thereby
develop customized deep learning models and algorithms on Intel® Gaudi® Al
Accelerators to innovate and optimize to their unique requirements. The TPC
programming language, TPC-C, is a derivative of C99 with added language data
types to enable easy utilization of processor-unique SIMD capabilities. It natively
supports wide vector data types to assist with programmming of the SIMD engine
(for example, float64, uchar256 and so on). It has many built-in instructions for
deep learning, including tensor-based memory accesses, acceleration for special
functions, random number generation and multiple data types.

Ecosystem Integration

The Intel® Gaudi software is natively integrated into PyTorch, both 1.x and 2.x.

It's also integrated to many popular software packages: DeepSpeed for
distributed training and inference, Hugging Face for using Transformers and
Diffusers models, vLLM for cutting-edge LLM serving throughput, and more.
The Intel® Gaudi software PyTorch Python packages expose several Gaudi
optimized operations, such as Flash Attention, to leverage the existing ecosystem
innovation around LLM training and inference.
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Quantization

Intel® Gaudi® 3 Al Accelerator has even more support for the FP8 datatype than
its predecessor. The Intel® Gaudi software exposes this to the userin the form of
an automated quantization tool for converting existing models with high accuracy
and improved throughput, as well as supporting a Transformer Engine-like API

for compatibility with existing models. The Intel® Gaudi software also supports
int4 weight-only quantization schemes, such as AWQ and GPTQ, and allows user
innovation in those areas by open-sourcing its quantization tool under the umbrella
of Intel® Neural Compressor.

Automatic Kernel Fusion

Kernel fusion has multiple benefits for training and inference, improving memory
bandwidth, amortizing overheads and for inference also reducing the overall
memory capacity and allowing an increase in the batch size for higher efficiency.
The Intel® Gaudi software includes a cutting-edge, MLIR-based kernel fuser,
capable of automatically generating fused kernels from sequences of primitive
kernels in the user graph, without the need for userintervention. These kernels
are then interfaced to the graph compiler to utilize Intel® Gaudi® Accelerator’s
heterogeneous architecture.

Intel® Gaudi® 3 Al Accelerator

DEEPSPEED INTEGRATION | LLMSERVING INTEGRATION | QUANTIZATIONINTEGRATION

PYTORCHINTEGRATION

GRAPH COMPILER

CUSTOMER OPTIMIZED MATRIX COLLECTIVE COMMUNICATION LIBRARY
CUSTOMTPC TPCKERNEL OPS
KERNELS LIBRARY LIBRARY

USER-MODE DRIVER /RUN-TIME ENVIRONMENT

COMPUTEDRIVER NETWORKDRIVER

Legend ECOSYSTEMINTEGRATION PROPRIETARY PLUGIN

Fig 15. Intel® Gaudi® software stack.
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Networking

As deep learning training is usually performed on multiple devices, the Intel®
Gaudi® 3 Al Accelerator Network Interface Controllers (NICs) are an essential
componentinthe overall Intel® Gaudi® third-generation training solution.
Intel® Gaudi® 3 Al Accelerator NICs are customized to fit a distribution of a
DNN graph between the devices in the network (scale-out). The NIC provides
the compute engine with remote direct memory access (RDMA) featuring
high bandwidth and low latency over reliable connection without any software
intervention. To fit common cloud infrastructure, NIC ports use Ethernet
(Eth) connectivity with an aggregated bandwidth of 4.8 Tb/s in each direction,
supporting multiple port configurations. The NIC implements RoCE v2
specification, benefiting from the commonly used Ethernet infrastructure
and the reliable and low latency RDMA of the InfiniBand (IB) protocol.

Intel® Gaudi® Acceleratorimplementation extends RoCE v2 specification to
better fitit to DNN applications and large-scale deployments enabling linear
scalability over thousands of Intel® Gaudi® Accelerators.

The upcoming sections highlight the main RoCE extension that Intel® Gaudi® 3 Al
Accelerator supports.

Mapping MPI Collective Operations to RDMA

RDMA protocol supports remote memory access using natural read and write
operations. RDMA read and write operations assume that the initiator has the
pointers for both the local and remote memory. However, DNN applications
commonly use MPI style collective operations that are based on a send-
receive approach.

This approach defines three main elements: first, the sender side which has the
pointer to the send buffer; second, the receiver side which has the pointer to the
receive buffer; and third, arendezvous flow to move data between the two sides.
Therefore, MPI collective operations do not map naturally to RDMA read and
write operations.

There are many ways to perform this mapping, each one with its own pros and

cons. Mapping MPI operations to RDMA send-receive operations is one option.
This option does not solve the rendezvous flow. When the sender sends data to
the receiver before the receiver has posted the receive operation,a RNR NACK
will be sent to initiate a retransmission, causing a significant performance drop.

Anotheroptionis toimplement the rendezvous on the receiver side using a
temporary buffer and later initiate a mem-copy once the receiver bufferis
available. This option has many drawbacks such as high latency and high memory
capacity.

Intel® Gaudi® Acceleratorimplements a hardware-based implementation that
solves the rendezvous flow on the sender side and thus ensures the datais sent to
the receiver only once and without the need fora mem-copy. This approach allows
us to expose a simple collective APl to the user, offloading the complexity from the
CPU to NIC’s hardware ensuring minimal latency and high message rate.
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Offloading Collective Kernels to HW

In practice, execution of collective operations is done by splitting it to multiple
send-receive operations between the ranks. The HLS-3 reference serverincludes
eight different Intel® Gaudi® Accelerators. Each device is assigned with a unique
rank ID. The connectivity between devices is done using multiple ports. Therefore,
a collective operation needs to be split between the ranks and between the multiple
ports connecting each rank. The splitting process consumes CPU resources,
potentially lowering port utilization and its transmission bandwidth. Intel® Gaudi 3
Al Accelerator NICs offload the collective operation to the hardware, allowing the
hardware to achieve full bandwidth with a buffer size as small as 300KBs.

Congestion Control - Timely Based

As DNN clusters become ever larger, congestion over the network becomes a
more predominant problem. Congestion on lossy networks may cause significant
performance degradation due to packet drop. Enabling Priority-based Flow
Control (PFC) to achieve lossless networks, prevents packet drops but congestion
may spread between the switching layers. RoCE v2 implements RoCE Congestion
Management (RCM) based on Explicit Congestion Notification (ECN). However,
RCMisacrude method, resultingin large throughput variability.

Inthe Intel® Gaudi® 3 Al Accelerator, congestion control was expanded to not
only support ECNs but also support timely based congestion schemes such
as SWIFT®. These algorithms use delay (RTT calculation) as their congestion
indication signal and as such have a much more fine-grained control over ECN.

Multi-Path Load Balancing (Packet Spraying)

Connectinglarge clusters of nodes requires multi-layer switching topologies.

In such cases, the network connectivity between nodes may include multiple
paths. To fully utilize the network’s bandwidth between two nodes and reduce
congestion, traffic should be balanced between all possible equal cost paths.
Deploying equal-cost multipath (ECMP) can provide a solution. However, as
discussed above, large clusters may also suffer from congestion which impacts
the different paths, reducing throughput and increasing flow’s completion time.

To mitigate congestion buildups, we introduced a load balancing system.

The system considers the path’s load and adapts the cost function to keep the
bandwidth utilization high and latency low. The load balancing system provides
amethod to re-order the packets traversed on different paths.

RDMA Reliable Connection (RC) Memory Footprint

Deploying alarge cluster of all-to-all connectivity using RDMA reliable connection
can suffer from unscalable memory footprint. Consider a cluster of N nodes, each
with P processes. If all P processes wish to communicate with all processes on all
the nodes, RDMA Reliable Connection service requires P*2x(N-1) QPs on each
node. Each QP includes a context with size of O(100Bytes) and a work queue

with size of O(10KBytes). In our implementation, the QPs are handled by the

Intel® Gaudi® Accelerator Collective Communication Library (CCL). CCL most-
commonly opens four QPs for each peer node in the cluster, so the total number of
QPsoneachnodeis 4x(N-1). Therefore, the memory footprint becomes scalable
with the number of nodes.
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INn-network Reduction

To reduce compute requirements for reduction operations and to provide
excellent overlap with the communication phase, the Intel® Gaudi® 3 Al
Accelerator supports the capability of performing reduction operations on the
network path. The supported operations are sum, min and max. In addition, the
reductions support different data types including FP32, FP16, BF16 and FP8.
Further, the BF16 and FP16 reductions can be performed with FP32 accumulation
for betteraccuracy.

Network and Compute Synchronization

Some DNN accelerator systems use discrete NICs to communicate with
othernodesin the cluster. In those systems, the synchronization between

the networking that transmits data and compute engine that consume data
suffer from high latency due to high host CPU utilization. The Intel® Gaudi®

3 Al Acceleratorintegrates both the NIC and compute engines and the
synchronization between them is done within the chip with minimal latency and
without hostintervention.

Tensor Semantics

Standard RDMA operations are designed to work with contiguous buffer,

but DNN applications are designed to work in tensor and sub-tensor semantics.
Mapping sub-tensors to a contiguous buffer to work with RDMA operations can be
very complex or even not scalable. Therefore, the Intel® Gaudi® 3 Al Accelerator
introduces a tensor engine within the NIC that can access both local and remote
memory in tensor semantics, much like all other engines in the chip.

Selective Retransmission and Out of Order Delivery

To provide high throughput and lower latency, the current RoCE implementation
depends on networks being lossless. Thisis attributed to InfiniBand (IB)
networks relying on credits while Ethernet based networks assume loss.
Recovery implementation for packet loss in IBis go-back-N, i.e., retransmitting
back from ONA once a NACK arrives. This greatly affects bandwidth and the
flow completion time and tail latency, even in cases of sporadic drops. Thisis
because all packets from ONA to NTS are re-transmitted.

Since data centers are moving to lossy architecture, mainly because Priority-
based Flow Control (PFC) has scalability limitations, Intel® Gaudi® 3 Al
Accelerator RoCE implementation extends the IB transport layer spec and
allows Selective ACKing by the responder and Selective Re-Transmission by
the requester. For all other purposes, the IB specis still valid. This allows Intel®
Gaudi®3 Al Accelerator’'s RoCE to be even more scalable than TCP/IP with
selective ACKimplementation.
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Cluster Architecture

Using standard Ethernet switches, modular and high-performance clusters

can be built to the desired scale. The following shows an example of building

a 512-node cluster (4096 Intel® Gaudi® 3 Al Accelerators) using 16-node sub-
cluster building blocks. In an Intel Gaudi 3 Al Accelerator-based server, each OAM
card has a NIC port connected to 3 of the OSFP scale-out ports of the server.
Then a sub-clusteris established by connecting 16 servers to 3 64-port 800 Gbps
Ethernet leaf switches. In the sub-cluster, any card in a system can communicate
with any other card in the other systems through all 3 of the leaf switches. Finally,
32 of the sub-clusters are networked together using 48 64-port 800 Gbps
Ethernet spine switches. This topology forms a 3-ply network, where all 64-ports
of each leaf and spine switch are utilized.

Figure 16 features representations of GenAl system scale out as a single node,
16-node sub-cluster, and 512-node cluster.

Node Level Architecture

NODE NODE(N)
6x OSFPB00GbE OSFP | OSFP OSFP | osFP OSFP | osFP | |
200Gb/s Bi-Directional RETIMER RETIMER RETIMER —_—
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SUB-CLUSTER
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Fig 16. Intel® Gaudi® 3 AI Accelerator - Scale-out Cluster Architectures.
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Putting It All Together: Combining Hardware and
Software for a Unified Al Acceleration Solution

The Intel® Gaudi Software Suite offers a comprehensive set of capabilities that
significantly enhance the Intel® Gaudi® 3 Al Accelerator hardware utilization. In this
chapter, we delve into the seamless integration of various components from the
Intel® Gaudi Software Suite, illustrating how they collaboratively reduce workload
runtimes. By examining a practical example drawn from Large Language Models
(LLMs), we highlight the impact of key software layers on hardware efficiency.

Naive Execution of a Transformer Sub-Sequence

Language Models (LLMs) are composed of a series of repeating Transformer

layers. Each Transformer layer involves an intricate sequence of operations,

including:

1. General Matrix Multiplication (GEMM): A fundamental operation for linear
transformations.

2.Batched-GEMM: An optimized variant of GEMM that efficiently processes
multiple inputs.

3.Normalization: Encompasses techniques such as softmax, layer normalization,
or RMSNorm.

4. Residual-Add: A crucial component for preserving information flow.

5.Non-Linear Activation Function: Choices include GELU or SwiGLU.

6.Dropout (Training Only): A regularization technique to prevent overfitting.

MODEL RESIDUAL
PARAMETERS ACTIVATIONS

INPUT ; ; GEMM ; RESIDUAL ; RESIDUAL ; NORMALIZED
ACTIVATIONS CE OUTPUT ADD OUTPUT DR P/ 7 ACTIVATIONS

Fig 17. Illustration of a Transformer layer sub-graph from large-language model.

In Figure 17 we visualize a sub-sequence of operations that
repeat twice within a transformer layer.

Blue colored graph nodes (rounded-corner rectangles) represent MME
operations, while green colored graph nodes represent TPC operations.
The sub-sequence of operations comprises the following steps:

1. GEMM: Executed by the MME

2.Residual-Add: Executed by the TPC

3.Normalization: Executed by the TPC

Executing the sequence of operations without any optimization results in the
runtime illustrated in Figure 18. All eight MME units logically work as a single
unit and execute the GEMM to completion. Each TPC kernel was written using
the Intel® Gaudi® Accelerator TPC SDK, which uses TPC’s ISA and
microarchitecture efficiently.
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Fig 18. Illustration of timeline execution for naive software implementation of the sub-graph in Figure 17.

Inthe execution shown in Figure 18, entire GEMM output is written to cache.
However, since the full GEMM output can exceed the cache capacity,

asis usually the case in large workloads, all GEMM outputs that do not fitin cache
will be written to HBM. The TPC starts executingits first kernel after all GEMM
result writes are completed. When TPC starts its execution, due to the large
input size, some of the inputs will be read from the HBM, resulting in relatively
long latency (1-2usec), which is determined by the HBM. The second TPC kernel
experiences the same long latency as the first kernel.

Automatic Kernel Fusion

Oneimmediate improvement thatis delivered by the Intel® Gaudi® software
suite is automatic kernel fusion. The two TPC kernels are automatically fused to
generate a new kernel that contains the union of operations within the separate
kernels. Fused kernel’s inputs and outputs are the external inputs and outputs
of the fused kernels. Fusing the kernel saves the I/O of reading or writing
intermediate results between the original kernels.

MODEL RESIDUAL
PARAMETERS ACTIVATIONS

INPUT ; ; GEMM
ACTIVATIONS CERE OUTPUT

Fig 19. Illustration of the sub-graph from Figure 17 after the fuser has fused the two consecutive TPC kernels to one.

RESIDUAL
OUTPUT

RESIDUAL ADD &
NORMALIZATION

NORMALIZED
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Fusing the sub-graphin Figure 17 results in the sub-graph illustrated in Figure 19.

1. Saving I/O time for writing a result from one kernel, then reading the same result
in the following kernel.

2.Inter-kernellatency saving.

Executing the sub-graph of Figure 19 results in the executionillustratedin

Figure 20. Runtime gain manifests in the two ways explained above. First, there

is only one latency window between executing engines. Second, entire TPC
runtime has decreased since the normalization part of the fused kernel reads its
input internally from the TPC and not from an external I/O, thereby saving I/O time.
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Fig 20. Illustration of device execution of the sub-graph from Figure 19.

Producer-Consumer Pipelining by the Graph Compiler

The Graph Compiler described in previous sections is specifically designed to
optimize the execution of workloads on the Intel® Gaudi® 3 Al Accelerator’s
heterogeneous architecture. In cases where itis logically feasible, dependent
engines are scheduled to operate in a pipelined manner, establishing a producer-
consumer execution dependency. The producer writes its output to the L2 cache,
the highest cache hierarchy shared by the MME and TPC. Once the output s fully
written, the consumer reads this output from the cache asinput. Intel® Gaudi®
software suite ensures that the produced data fits within the cache, and the
granularity of work allows for efficient device utilization.

By leveraging cache-based pipelining, we achieve minimal latency between the
producer and the consumer, resulting in optimal utilization of all device engines.
Figure 2Tillustrates this producer-consumer relationship: a GEMM operation
executed by the MME and a fused residual add & normalization operation
executed by the TPC. The input and output of the GEMM operation are splitinto
four slices, with each output slice fully produced by the MME and subsequently
read as input by the TPC.

SLICE1 SLICE2 SLICE3 SLICE4

T (=

MME \ \
TIME
CACHE CACHE CACHE CACHE

GEMM GEMM GEMM ]

SHORT SHORT SHORT SHORT

S/LaTENCY SILATENCY S/LATENCY S/LaTENCY

HHHHHHHH RESIDUAL ADD & RESIDUAL ADD & RESIDUAL ADD & RESIDUAL ADD &

HHHHHHHH NORMALIZATION NORMALIZATION NORMALIZATION NORMALIZATION
TPC SLICE SLICE 2 SLICE 3 SLICE 4

TIME

Fig 21. Illustration of pipelining between MME and TPC through the cache, when MME is the producer and TPC is the consumer.
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Adding Network to the Mix

As stated above, Intel® Gaudi® 3 Al Accelerator architecture inherently supports
running all engines in parallel, including the NIC. Expanding upon the example
from Figure 19, we add all-reduce collective communication that follows the
GEMM operation and before residual add. Figure 22 illustrates the sub-graph
thatis formed when adding the all-reduce collective operation. The all-reduce is
requiredin cases of Tensor-Parallelism split of an LLM between multiple devices,
for training and inference use cases.

MODEL GEMM QUTPUTS FROM RESIDUAL RESIDUAL

PARAMETERS OTHER GAUDIS ACTIVATIONS OUTPUT
INPUT ( ) GEMM ALL-REDUCE a RESIDUAL ADD & NORMALIZED
ACTIVATIONS L CER J OUTPUT OUTPUT NORMALIZATION ACTIVATIONS

Fig 22. Illustration of the sub-graph from Figure 19 with an all-reduce collective communication operation between the GEMM and fused TPC kernel.

In a naive execution, the all-reduce will interfere with the pipelining. The resultis
sequential execution of the GEMM, allreduce and fused TPC kernel, as illustrated
in Figure 23. We see no parallelism between the engines and long latencies
between the engine activations.

By structuring the LLM code in a manner that enables parallel execution of
all-reduce operations, the Graph Compiler and HCL can efficiently distribute
workloads across multiple engines. This approach maximizes device utilization. In
Figure 24, we visualize the effective execution on Intel® Gaudi® 3 Al Accelerator of
the sub-graph depicted in Figure 22. Specifically, the diagram illustrates the data
flow: MME as the producer to the NIC, the NIC being a consumer of MME's output
and producerto the TPC, and TPC being a consumer of NIC output.
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Fig 23. A naive execution of the operations in the subgraph of Figure 22.
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Fig 24. Optimized scheduling of the MME, NIC and TPC, with a producer-consumer relation between all three engines.
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Intel® Gaudi®
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Fig 25. Intel® Gaudi® AI Accelerator Product Line.

Intel Gaudi® 3 Performance Improvements

Intel® Gaudi® 3 Al Acceleratoris the third generation of the Intel Gaudi Al
Accelerator family. The large HBM capacity and bandwidth allow the Intel®
Gaudi® 3 Al Accelerator to achieve state-of-the-art GenAl training and inference
performance.

Intraining scenarios, virtually all of the advanced capabilities of Intel® Gaudi® 3Al
Accelerator over the previous generation come into play. Since training scenarios
are compute-intensive, the increased compute ratio provides immediate gain.
The increased HBM bandwidth allows larger compute to manifest the increased
compute power. In addition, the larger HBM capacity also contributes to improved
performance. Larger HBM capacity allows increased batch size, enabling higher
compute utilization and allows avoiding re-computation of certain parts of the
workload or avoiding model-parallel splits, which add networking operations
during runtime.

In general, LLM inference throughputis determined by the available HBM
bandwidth, which is used for reading the model parameters and context window.
When comparing Intel® Gaudi® 3 Al Accelerator to Intel® Gaudi® 2 Al Accelerator,
we expect that for small LLMs (13B-sized model or smaller), speedup is similar

to the ratio of HBM bandwidths between the two generations of accelerators,
roughly 1.5x. However, when comparing larger LLM models, like LLama-70B,
improvements are expected to be greater than the HBM bandwidth ratios and
surpass a 2x ratio. The largerimprovement is due to the larger memory capacity
thatis available for Intel® Gaudi® 3 Al Accelerator This larger capacity allows use
of increased batch size and therefore more samples processed per given amount
of time.

Measured performance of Intel® Gaudi® 3 Al Accelerators will be updated and
published at Model Performance for Intel® Gaudi® 3 Al Accelerators coinciding
with the Intel Gaudi software releases.
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